7 Available Tokens Data From Subgraph
note: here use RPC node to grab block close to chainhead and use it for timetravel query
# wait one minute - closing allocations takes a while so not needed
#Sys.sleep(60)
# Select columns needed for rewards_per_token calculation and general info
# Remove queries_per_indexer as it no longer exists
rewards_info = synced_subgraphs %>%
select(deployment, signalled_tokens, total_allocated_tokens, rewards_proportion)
# Optional: Add queries_per_indexer_48h here if needed for rewards_info analysis later
# select(deployment, signalled_tokens, total_allocated_tokens, rewards_proportion, queries_per_indexer_48h)
# Now pull total available tokens
query = '{
indexers(where: {id: "0x74dbb201ecc0b16934e68377bc13013883d9417b"}) {
stakedTokens
delegatedTokens
availableStake
}
}'
# Send POST request to the GraphQL API
response = POST(url, body = list(query = query), encode = "json")
# Parse the JSON response
content = content(response, "text", encoding='UTF-8')
json_data = fromJSON(content, flatten = TRUE)
# get available tokens amounts
available_tokens = as.data.frame(json_data$data$indexers) %>%
mutate(available_stake = as.numeric(availableStake)/10^18,
total_stake = (as.numeric(stakedTokens)/10^18)+(as.numeric(delegatedTokens))/10^18) %>%
select(-availableStake, -delegatedTokens, -stakedTokens)
# Calculate rewards per token
rewards_info$rewards_per_token = rewards_info$rewards_proportion / rewards_info$total_allocated_tokens
# Sort by rewards per token in descending order
rewards_info = rewards_info[order(-rewards_info$rewards_per_token), ] %>% filter(rewards_per_token > 0, rewards_per_token < 9999999)available_tokens## available_stake total_stake
## 1 112970.1 2579844
rewards_info## # A tibble: 278 × 5
## deployment signalled_tokens total_allocated_tokens rewards_proportion
## <chr> <dbl> <dbl> <dbl>
## 1 QmbWhGfCrewoQvwJ7… 1.00 100 0.0100
## 2 QmbK8eiivKro8XT9x… 1.00 100 0.0100
## 3 QmVa4x9Jqhq2b3QbU… 1.00 100 0.0100
## 4 QmZqKd3ZvqwWcLsyd… 1.00 100 0.0100
## 5 QmbPUyAyzyVVFpaJC… 1.00 100 0.0100
## 6 QmdUknu8tyvH1BAE1… 1.00 100 0.0100
## 7 QmZ3TUhnG2cJxniWh… 1.00 100 0.0100
## 8 Qme4i64hYrHrAgwuH… 1.00 100 0.0100
## 9 QmSdc5FFbLzF436KE… 1.00 100 0.0100
## 10 QmPB1fZxWhgMA9u6K… 1.00 100 0.0100
## # ℹ 268 more rows
## # ℹ 1 more variable: rewards_per_token <dbl>
save.image('/root/github/indexer_analytics_tutorial/data/chapters_snapshots/08-available_tokens.RData')